3(n+1)(n+2)-(n-1)(n+1)(n+2)=3(n+1)

Simple and best practice solution for 3(n+1)(n+2)-(n-1)(n+1)(n+2)=3(n+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(n+1)(n+2)-(n-1)(n+1)(n+2)=3(n+1) equation:


Simplifying
3(n + 1)(n + 2) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)

Reorder the terms:
3(1 + n)(n + 2) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)

Reorder the terms:
3(1 + n)(2 + n) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)

Multiply (1 + n) * (2 + n)
3(1(2 + n) + n(2 + n)) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)
3((2 * 1 + n * 1) + n(2 + n)) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)
3((2 + 1n) + n(2 + n)) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)
3(2 + 1n + (2 * n + n * n)) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)
3(2 + 1n + (2n + n2)) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)

Combine like terms: 1n + 2n = 3n
3(2 + 3n + n2) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)
(2 * 3 + 3n * 3 + n2 * 3) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)
(6 + 9n + 3n2) + -1(n + -1)(n + 1)(n + 2) = 3(n + 1)

Reorder the terms:
6 + 9n + 3n2 + -1(-1 + n)(n + 1)(n + 2) = 3(n + 1)

Reorder the terms:
6 + 9n + 3n2 + -1(-1 + n)(1 + n)(n + 2) = 3(n + 1)

Reorder the terms:
6 + 9n + 3n2 + -1(-1 + n)(1 + n)(2 + n) = 3(n + 1)

Multiply (-1 + n) * (1 + n)
6 + 9n + 3n2 + -1(-1(1 + n) + n(1 + n))(2 + n) = 3(n + 1)
6 + 9n + 3n2 + -1((1 * -1 + n * -1) + n(1 + n))(2 + n) = 3(n + 1)
6 + 9n + 3n2 + -1((-1 + -1n) + n(1 + n))(2 + n) = 3(n + 1)
6 + 9n + 3n2 + -1(-1 + -1n + (1 * n + n * n))(2 + n) = 3(n + 1)
6 + 9n + 3n2 + -1(-1 + -1n + (1n + n2))(2 + n) = 3(n + 1)

Combine like terms: -1n + 1n = 0
6 + 9n + 3n2 + -1(-1 + 0 + n2)(2 + n) = 3(n + 1)
6 + 9n + 3n2 + -1(-1 + n2)(2 + n) = 3(n + 1)

Multiply (-1 + n2) * (2 + n)
6 + 9n + 3n2 + -1(-1(2 + n) + n2(2 + n)) = 3(n + 1)
6 + 9n + 3n2 + -1((2 * -1 + n * -1) + n2(2 + n)) = 3(n + 1)
6 + 9n + 3n2 + -1((-2 + -1n) + n2(2 + n)) = 3(n + 1)
6 + 9n + 3n2 + -1(-2 + -1n + (2 * n2 + n * n2)) = 3(n + 1)
6 + 9n + 3n2 + -1(-2 + -1n + (2n2 + n3)) = 3(n + 1)
6 + 9n + 3n2 + -1(-2 + -1n + 2n2 + n3) = 3(n + 1)
6 + 9n + 3n2 + (-2 * -1 + -1n * -1 + 2n2 * -1 + n3 * -1) = 3(n + 1)
6 + 9n + 3n2 + (2 + 1n + -2n2 + -1n3) = 3(n + 1)

Reorder the terms:
6 + 2 + 9n + 1n + 3n2 + -2n2 + -1n3 = 3(n + 1)

Combine like terms: 6 + 2 = 8
8 + 9n + 1n + 3n2 + -2n2 + -1n3 = 3(n + 1)

Combine like terms: 9n + 1n = 10n
8 + 10n + 3n2 + -2n2 + -1n3 = 3(n + 1)

Combine like terms: 3n2 + -2n2 = 1n2
8 + 10n + 1n2 + -1n3 = 3(n + 1)

Reorder the terms:
8 + 10n + 1n2 + -1n3 = 3(1 + n)
8 + 10n + 1n2 + -1n3 = (1 * 3 + n * 3)
8 + 10n + 1n2 + -1n3 = (3 + 3n)

Solving
8 + 10n + 1n2 + -1n3 = 3 + 3n

Solving for variable 'n'.

Reorder the terms:
8 + -3 + 10n + -3n + 1n2 + -1n3 = 3 + 3n + -3 + -3n

Combine like terms: 8 + -3 = 5
5 + 10n + -3n + 1n2 + -1n3 = 3 + 3n + -3 + -3n

Combine like terms: 10n + -3n = 7n
5 + 7n + 1n2 + -1n3 = 3 + 3n + -3 + -3n

Reorder the terms:
5 + 7n + 1n2 + -1n3 = 3 + -3 + 3n + -3n

Combine like terms: 3 + -3 = 0
5 + 7n + 1n2 + -1n3 = 0 + 3n + -3n
5 + 7n + 1n2 + -1n3 = 3n + -3n

Combine like terms: 3n + -3n = 0
5 + 7n + 1n2 + -1n3 = 0

The solution to this equation could not be determined.

See similar equations:

| 4y+8x+3x-18y= | | -12=2(4-7) | | 8x+6(2x-8)=432 | | 2(1.6)+1= | | Y-170=8.63(x-11) | | 3*3=9/2 | | 3(x-4)+x=2x-12 | | 8j+9f+j+f+89+9= | | x(y-3z)= | | 12x-6=2+11x | | 1.6+3= | | 2/3n=9 | | x-4/5=-13 | | 9=3(5-20) | | x-(-2x-7)=-11 | | y=(2x+3)(x-4) | | 2/3n*9 | | b=1/2kv | | 84+33x=18x | | 0.6x+3.5=3.9 | | 240=291-w | | X+2(x-1)=7 | | 8(3a+6)=9(-2a-4) | | 2(x-1)=3-4x | | 2/3n*3=9 | | 166=-v+36 | | 4e-23=6e-5 | | 14.32+0.06x=14.82+0.11x | | 3y=(2+x+5y) | | -8(v+2)+3v+6=6v+12 | | 5(d+2)-9=21 | | x(3x-4)=(3x+9)(x-4) |

Equations solver categories