3(6n+32)+5(N+1)=u

Simple and best practice solution for 3(6n+32)+5(N+1)=u equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(6n+32)+5(N+1)=u equation:


Simplifying
3(6n + 32) + 5(N + 1) = u

Reorder the terms:
3(32 + 6n) + 5(N + 1) = u
(32 * 3 + 6n * 3) + 5(N + 1) = u
(96 + 18n) + 5(N + 1) = u

Reorder the terms:
96 + 18n + 5(1 + N) = u
96 + 18n + (1 * 5 + N * 5) = u
96 + 18n + (5 + 5N) = u

Reorder the terms:
96 + 5 + 5N + 18n = u

Combine like terms: 96 + 5 = 101
101 + 5N + 18n = u

Solving
101 + 5N + 18n = u

Solving for variable 'N'.

Move all terms containing N to the left, all other terms to the right.

Add '-101' to each side of the equation.
101 + 5N + -101 + 18n = -101 + u

Reorder the terms:
101 + -101 + 5N + 18n = -101 + u

Combine like terms: 101 + -101 = 0
0 + 5N + 18n = -101 + u
5N + 18n = -101 + u

Add '-18n' to each side of the equation.
5N + 18n + -18n = -101 + -18n + u

Combine like terms: 18n + -18n = 0
5N + 0 = -101 + -18n + u
5N = -101 + -18n + u

Divide each side by '5'.
N = -20.2 + -3.6n + 0.2u

Simplifying
N = -20.2 + -3.6n + 0.2u

See similar equations:

| 7b=98 | | (-6x^4-7x^3-8x)+(8x^4+9x^3-5)= | | 1/6x-4=1 | | -5(4x-4)+9=20x+29 | | f(x)=12(-3)-7 | | 50(1/20)=20x(1/20) | | 8x^2=112 | | 42X+-52=12 | | 5+14x=9x-5 | | 15/4*12/11 | | (X-0.6)(x+0.3)=0 | | 119+-58= | | 4x^2+23x=6 | | F(x)=1.5in(x-2) | | 4p^2=1/16 | | 20x+18x=14 | | 4x-5(x+3)=22 | | x+40=270 | | 64-c=48 | | 0=10.02x^2+1.2x+5.2 | | (-9)=6-5t | | -5=-(x+7) | | 7x+9=7(X-7) | | 12s^2+60=0 | | G(x)=log(1/8)^x | | -2(x-3)=36 | | log(3x+5)=1+log(x-7) | | 3(6x+5)=18x+15 | | 3x^2+2x^2=45 | | 9f=1/2(12f−2) | | 8x-15=5x+48 | | 3n-7=26 |

Equations solver categories