If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(5n-1)-14n+9=10(n-4)6n-4(n+1)
We move all terms to the left:
3(5n-1)-14n+9-(10(n-4)6n-4(n+1))=0
We add all the numbers together, and all the variables
-14n+3(5n-1)-(10(n-4)6n-4(n+1))+9=0
We multiply parentheses
-14n+15n-(10(n-4)6n-4(n+1))-3+9=0
We calculate terms in parentheses: -(10(n-4)6n-4(n+1)), so:We add all the numbers together, and all the variables
10(n-4)6n-4(n+1)
We multiply parentheses
60n^2-240n-4n-4
We add all the numbers together, and all the variables
60n^2-244n-4
Back to the equation:
-(60n^2-244n-4)
n-(60n^2-244n-4)+6=0
We get rid of parentheses
-60n^2+n+244n+4+6=0
We add all the numbers together, and all the variables
-60n^2+245n+10=0
a = -60; b = 245; c = +10;
Δ = b2-4ac
Δ = 2452-4·(-60)·10
Δ = 62425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{62425}=\sqrt{25*2497}=\sqrt{25}*\sqrt{2497}=5\sqrt{2497}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(245)-5\sqrt{2497}}{2*-60}=\frac{-245-5\sqrt{2497}}{-120} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(245)+5\sqrt{2497}}{2*-60}=\frac{-245+5\sqrt{2497}}{-120} $
| 6n+7=2n+5 | | 20+14z=8+17z | | 7+11s=10s | | 12×+5x-2=0 | | 5.7s-9.19=7.6s+12.28 | | 110+(11x+26)=180 | | 10+14b=13b | | -1+12v=3+16v | | 2.6=4y | | 2b-3b+9=69 | | 10.7k=-12.47+7.8k | | -3n+10+11n=-2+7n | | 2(x+5)=8x+15=90 | | 2x+5)+(8x+15)=90 | | 3/10x+7=15 | | 177+2h=1,095 | | 1/8+2/3w=3/4 | | (10x+50)=(8x+60) | | 4x=-6x-1 | | 11x+26=110 | | 1/5r+6=18 | | 2y*3y=384 | | -1/5r+6=18 | | -3r+9(7r+9)=-27+6r | | 9n+7(-6n+1)=-10n-39 | | 16x+15/2=0 | | -(7+i)(-4-2i)(2-i)=0 | | −5(3x−15)=2(x−8)−79 | | 3(x+5)-3=3x+12 | | 12(x−36)=3+4x | | 29+3x=4(−x+3)−18 | | 4.9-8.7r=-1.7r |