If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(3.6-x)(0.8-x)=(1.2+x)(0.8+x)
We move all terms to the left:
3(3.6-x)(0.8-x)-((1.2+x)(0.8+x))=0
We add all the numbers together, and all the variables
3(-1x+3.6)(-1x+0.8)-((x+1.2)(x+0.8))=0
We multiply parentheses ..
3(+x^2-0.8x-3.6x+2.88)-((x+1.2)(x+0.8))=0
We calculate terms in parentheses: -((x+1.2)(x+0.8)), so:We multiply parentheses
(x+1.2)(x+0.8)
We multiply parentheses ..
(+x^2+0.8x+1.2x+0.96)
We get rid of parentheses
x^2+0.8x+1.2x+0.96
We add all the numbers together, and all the variables
x^2+2x+0.96
Back to the equation:
-(x^2+2x+0.96)
3x^2+0x-9x-(x^2+2x+0.96)+8.64=0
We get rid of parentheses
3x^2-x^2+0x-9x-2x-0.96+8.64=0
We add all the numbers together, and all the variables
2x^2-10x+7.68=0
a = 2; b = -10; c = +7.68;
Δ = b2-4ac
Δ = -102-4·2·7.68
Δ = 38.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-\sqrt{38.56}}{2*2}=\frac{10-\sqrt{38.56}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+\sqrt{38.56}}{2*2}=\frac{10+\sqrt{38.56}}{4} $
| (x^2)-x=333 | | 23.00+25.50x=40.00+21.25x | | 23.00+25.50x=40.00+21.25 | | 2(3u+8=70 | | -4.9t2+39.2t+15=50 | | 1.75+4/d=3.20 | | 100-(x)=25*(x) | | 6j^2-9j-15=0 | | 130+25x+5=180 | | 2/x^2-1/1/x-1=1 | | 2(3x+4)=2x-4 | | 175m-100m+53075=56375-200m | | x-5.6=6.19 | | 175m-100m+53075=56375 | | x+4/x^2-1-5=1/x-1 | | r/4-4=11 | | 14,000+160x=24,000+200/x | | X4-3=x+8 | | 3.5p+30=56.25 | | 9x+6-4x=2x+1=15 | | 7(3x-0.4)=3x-2.8 | | -102=8x-2(2-3x) | | 8(3g+2)+-3g=3(5g-4)-2 | | 3(4-z)=9 | | 5r+15=4r-21 | | x*0.7=1 | | (0.4-x)(0.4-x)=0 | | 2.7z+5.4=14.50 | | (0.5x)(2.6+0.5x)=0 | | 7-8-4x=7-4 | | 14,000+160x=24,000+200x | | X3+4=5+6x |