3(2y-1)-2y(y-2)=-4(y+3)

Simple and best practice solution for 3(2y-1)-2y(y-2)=-4(y+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2y-1)-2y(y-2)=-4(y+3) equation:



3(2y-1)-2y(y-2)=-4(y+3)
We move all terms to the left:
3(2y-1)-2y(y-2)-(-4(y+3))=0
We multiply parentheses
-2y^2+6y+4y-(-4(y+3))-3=0
We calculate terms in parentheses: -(-4(y+3)), so:
-4(y+3)
We multiply parentheses
-4y-12
Back to the equation:
-(-4y-12)
We add all the numbers together, and all the variables
-2y^2+10y-(-4y-12)-3=0
We get rid of parentheses
-2y^2+10y+4y+12-3=0
We add all the numbers together, and all the variables
-2y^2+14y+9=0
a = -2; b = 14; c = +9;
Δ = b2-4ac
Δ = 142-4·(-2)·9
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{67}}{2*-2}=\frac{-14-2\sqrt{67}}{-4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{67}}{2*-2}=\frac{-14+2\sqrt{67}}{-4} $

See similar equations:

| 30x+35=125 | | y+60=120 | | 50x^-2=2 | | (X-2)(x)(x+8)=96 | | 35x+30=125 | | 73=(x+2) | | 9x–5=5x+7 | | 6(-4w+1)=-18 | | -3(1+8x)=165 | | 8j-5=43 | | 4(-5/4x+25.5)+5x=102 | | 4+x+x+8+3x-6=31 | | (3x+44)=(8x-11) | | y+1=120 | | -9b=-10b-3 | | -1=17-8x | | -8n+-6n+-9n-6n=-29n | | -1-+3m=2m | | x³=324 | | (4y-20)=140 | | ?+x=120 | | |2x-4|=82 | | -12x-108+4x=-84 | | 10.50+1.50(n-1)=75 | | 4-2m-6=-6m+8 | | –2(h−14)=–6 | | 24k=5k+3k | | 3+18=3x | | 5(x-1)=5x+7 | | 21/2w=9 | | -4(2x+1)=-2x+10-4x | | (-8,1);m=4 |

Equations solver categories