3(2x2-9+6x2)=3(2)+29-7(2)

Simple and best practice solution for 3(2x2-9+6x2)=3(2)+29-7(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x2-9+6x2)=3(2)+29-7(2) equation:



3(2x^2-9+6x^2)=3(2)+29-7(2)
We move all terms to the left:
3(2x^2-9+6x^2)-(3(2)+29-7(2))=0
We add all the numbers together, and all the variables
3(2x^2-9+6x^2)-(-11)=0
We add all the numbers together, and all the variables
3(2x^2-9+6x^2)+11=0
We multiply parentheses
6x^2+18x^2-27+11=0
We add all the numbers together, and all the variables
24x^2-16=0
a = 24; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·24·(-16)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{6}}{2*24}=\frac{0-16\sqrt{6}}{48} =-\frac{16\sqrt{6}}{48} =-\frac{\sqrt{6}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{6}}{2*24}=\frac{0+16\sqrt{6}}{48} =\frac{16\sqrt{6}}{48} =\frac{\sqrt{6}}{3} $

See similar equations:

| -2+5x-7=3x-9+2 | | 5y-3+3y+27=180 | | (6)+2y=13 | | 2v-10=-4(v+4) | | 3(2x-9-6x)=3x+29-7x | | 8x47=8(x+5) | | w/3+12=25 | | 18=y/4+14 | | -3/8x+3/7=-7/10 | | -(8/u-8)=7 | | -19x+9=16+3x | | 36=16u-7u | | -8/u-8=7 | | 8(x-1/2)=90 | | 9u-5u=4 | | {−10+5x=7x−4} | | -4x-19=16-8x | | 24x+12=90 | | 48+18=z | | (x+10)+(5x+30)+(4x-20)=180 | | 4x^2-15=1 | | .21x+x=9500 | | {28−6x+4=30−3x} | | 4x+139=10x-5 | | x/(72+12)=5/12 | | 8x^2+12x+34=0 | | 5+3(x+9=14 | | 17-5x=11-5x | | 8y+20=6(y+2) | | 7p,p=3 | | 20=12+x/4 | | 3=-7w+2(w+4) |

Equations solver categories