3(2x-5)+4=2/7x+8

Simple and best practice solution for 3(2x-5)+4=2/7x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x-5)+4=2/7x+8 equation:



3(2x-5)+4=2/7x+8
We move all terms to the left:
3(2x-5)+4-(2/7x+8)=0
Domain of the equation: 7x+8)!=0
x∈R
We multiply parentheses
6x-(2/7x+8)-15+4=0
We get rid of parentheses
6x-2/7x-8-15+4=0
We multiply all the terms by the denominator
6x*7x-8*7x-15*7x+4*7x-2=0
Wy multiply elements
42x^2-56x-105x+28x-2=0
We add all the numbers together, and all the variables
42x^2-133x-2=0
a = 42; b = -133; c = -2;
Δ = b2-4ac
Δ = -1332-4·42·(-2)
Δ = 18025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18025}=\sqrt{25*721}=\sqrt{25}*\sqrt{721}=5\sqrt{721}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-133)-5\sqrt{721}}{2*42}=\frac{133-5\sqrt{721}}{84} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-133)+5\sqrt{721}}{2*42}=\frac{133+5\sqrt{721}}{84} $

See similar equations:

| 2(4x+2)=4x-12(x-10 | | 21=4u-15 | | 6y=15+3y | | 4y-3+y+30=5y+30-3y | | 37+8.50t+14.99=242.49 | | 7n+10=6n | | 2/3x+5=-4-1/3x | | F(x)=11/x3 | | -19x-1=-12x+35 | | (-3x+5)/5+8/5=-(4x)/5 | | -9(v+9)=3v+15 | | 2l+2×10=10+4(l×10) | | 2x2+7x-1=0 | | 1+2n+1=-10 | | 5+7g=4-2g | | 20=2x-12 | | 12v+7+10v=15 | | 9+6d=9d | | 2x+x+6=×+2x+9 | | 215=104-y | | 40x+87=32x+56 | | -3=12y-5)2y-7) | | 1/4+3/m=11/20 | | 2*x+1/3=5/6 | | (5-2i)(5-2i)=0 | | -4-2f=5 | | U/2+3=u/3+4 | | x-0.1x=81 | | 43=13+6w | | 5x+1x=8x+.75x | | 108=1.8x | | 10x-18=-2x+64 |

Equations solver categories