3(2x-1)=4(3x-4)x=

Simple and best practice solution for 3(2x-1)=4(3x-4)x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x-1)=4(3x-4)x= equation:



3(2x-1)=4(3x-4)x=
We move all terms to the left:
3(2x-1)-(4(3x-4)x)=0
We multiply parentheses
6x-(4(3x-4)x)-3=0
We calculate terms in parentheses: -(4(3x-4)x), so:
4(3x-4)x
We multiply parentheses
12x^2-16x
Back to the equation:
-(12x^2-16x)
We get rid of parentheses
-12x^2+6x+16x-3=0
We add all the numbers together, and all the variables
-12x^2+22x-3=0
a = -12; b = 22; c = -3;
Δ = b2-4ac
Δ = 222-4·(-12)·(-3)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{85}}{2*-12}=\frac{-22-2\sqrt{85}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{85}}{2*-12}=\frac{-22+2\sqrt{85}}{-24} $

See similar equations:

| 12=4(b-2)b= | | O.06x-0.2=5.2 | | v-527=259 | | 5x-1-12x=3x-7 | | c+110=913 | | x4–24x2+144=0 | | a8+19=20 | | 133.35=5(0.05m+20.70+0.10(20.70)) | | 360=5x-20+(360(4x+10)) | | ½r-3=3(4-3/2r) | | 13p+4=17 | | 8=2w-2 | | 18q+20=20 | | 7x-126=3x | | 37=7+5u | | 7x+5+3x=17 | | 3x÷4-x÷2=16 | | 2x+x=204 | | 5x-160=117 | | 24=2y+4 | | 1.6x=-3/2 | | 10x+6=9x+11 | | n-22=-50 | | -4x+4=-5x+11 | | 5a-9=8(a+1)+16a+3 | | 15a+17=2 | | 9x=18+3 | | |2x−3|−4=3 | | 1/3(y−6)=4y= | | -2x-3=7-3x | | 6x/13=2 | | 9g–2=-20 |

Equations solver categories