3(2x-1)+5=8x(x+1)

Simple and best practice solution for 3(2x-1)+5=8x(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x-1)+5=8x(x+1) equation:



3(2x-1)+5=8x(x+1)
We move all terms to the left:
3(2x-1)+5-(8x(x+1))=0
We multiply parentheses
6x-(8x(x+1))-3+5=0
We calculate terms in parentheses: -(8x(x+1)), so:
8x(x+1)
We multiply parentheses
8x^2+8x
Back to the equation:
-(8x^2+8x)
We add all the numbers together, and all the variables
6x-(8x^2+8x)+2=0
We get rid of parentheses
-8x^2+6x-8x+2=0
We add all the numbers together, and all the variables
-8x^2-2x+2=0
a = -8; b = -2; c = +2;
Δ = b2-4ac
Δ = -22-4·(-8)·2
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{17}}{2*-8}=\frac{2-2\sqrt{17}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{17}}{2*-8}=\frac{2+2\sqrt{17}}{-16} $

See similar equations:

| 6x-(2x+5)=-2 | | -2(4-3y)=-50* | | (c/4)+17=33 | | 2/3=x/(x+1) | | 5(2+1/2y)+3y=9 | | -1.8m-1.1=14.02 | | 4a^2+28a-32=0 | | 4+6(2x+5)=-2 | | 5x+15=9+4x | | 4b+8-10=14 | | -38=-5x+2(6x+9) | | 2/3(6*j+9)=3*j+7 | | 5(3x+9)=75* | | x=3500+.25x | | x+3x=20-x | | w÷-4=3 | | 8-4(2x-5)=-36 | | -6x+12=9 | | 8(m+5)=48* | | 255=-15k | | 3(x-4)+6=24 | | 16x+18=82 | | 8.94=–3u | | x+4/3​ =6 | | 3(x–1)=3x–3 | | -f+4f-3f=0 | | 3x-7x=40 | | −2(6n−1)−10=112 | | 11x+6= 8x+30 | | 7h-8+4h=-30 | | 2/(3y+6)=0 | | -f+4f-3f=0 |

Equations solver categories