If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(2n-5)+n=-3n(n-3)-(n-1)
We move all terms to the left:
3(2n-5)+n-(-3n(n-3)-(n-1))=0
We add all the numbers together, and all the variables
n+3(2n-5)-(-3n(n-3)-(n-1))=0
We multiply parentheses
n+6n-(-3n(n-3)-(n-1))-15=0
We calculate terms in parentheses: -(-3n(n-3)-(n-1)), so:We add all the numbers together, and all the variables
-3n(n-3)-(n-1)
We multiply parentheses
-3n^2+9n-(n-1)
We get rid of parentheses
-3n^2+9n-n+1
We add all the numbers together, and all the variables
-3n^2+8n+1
Back to the equation:
-(-3n^2+8n+1)
-(-3n^2+8n+1)+7n-15=0
We get rid of parentheses
3n^2-8n+7n-1-15=0
We add all the numbers together, and all the variables
3n^2-1n-16=0
a = 3; b = -1; c = -16;
Δ = b2-4ac
Δ = -12-4·3·(-16)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{193}}{2*3}=\frac{1-\sqrt{193}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{193}}{2*3}=\frac{1+\sqrt{193}}{6} $
| 4x−17=−1 | | 0.6y=1.8* | | x-2/3=22/5 | | 3/5+15=10+2/5n | | 3(5x-9)-15=-2(6-2x)+x | | x=3+(-4)/2 | | 1.036=10y* | | 3p15=19 | | 40x-600=2400 | | 1=-2+3p | | 11-3x=75-1x-x | | 132+9x+3=180 | | 27x−3=105. | | 0.2x+38.4=52 | | d-8/3=3 | | 123=j-75 | | 2y+5+y+10=180 | | 3x-4+4x+10=180 | | 3x+8+4x=-8{x-6}-8{13x+5} | | 8(x-3)=8x-12 | | 2.5/1.5=1.5/x | | x+2x+3x+4x+5x+6x+7x+8x+9x=100 | | 3x+8+4x=-8{x-6}-8{13x=5} | | 12(x+10)=132 | | 4x-13+1x+8=180 | | 129=-7m+3 | | -2.1+a=5.8 | | 34(5-2.5x)=11(2x-8)+22.6 | | 2x-49+55+90=180 | | 3(y-2)+1=2(y-3)+(y-1) | | 2(4z+14=108 | | x=2.5x+15 |