3(2d-1)2d=4d(d-2)+5

Simple and best practice solution for 3(2d-1)2d=4d(d-2)+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2d-1)2d=4d(d-2)+5 equation:



3(2d-1)2d=4d(d-2)+5
We move all terms to the left:
3(2d-1)2d-(4d(d-2)+5)=0
We multiply parentheses
12d^2-6d-(4d(d-2)+5)=0
We calculate terms in parentheses: -(4d(d-2)+5), so:
4d(d-2)+5
We multiply parentheses
4d^2-8d+5
Back to the equation:
-(4d^2-8d+5)
We get rid of parentheses
12d^2-4d^2-6d+8d-5=0
We add all the numbers together, and all the variables
8d^2+2d-5=0
a = 8; b = 2; c = -5;
Δ = b2-4ac
Δ = 22-4·8·(-5)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*8}=\frac{-2-2\sqrt{41}}{16} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*8}=\frac{-2+2\sqrt{41}}{16} $

See similar equations:

| 9^(y-4)=6.28 | | 3(2d-1)2d=4d(d-2)=5 | | 25-(-x)=20 | | (14+18)x=256 | | 0.25x-3=-9 | | 90000=40(4x)+140(x) | | 27^2+2=81^x+4 | | x+12+2x-5+3x+8=180 | | 3/4(x-2=12 | | 7f+9+4=34 | | 1.5x+12=48-3x | | 4r-1=65 | | 3a+12=-2-18 | | 25=-5(2x+1) | | 45=r-15 | | 3+2y=3500 | | -5x-2(-3x-12)=17 | | (30)(6t)=R(2t) | | -14n=84 | | d/12=-21 | | 2x6+5x-1=7 | | -5z(z-4)(z+2)=0 | | 6(x+7)=3x+7+2x | | 8x+7=9x+7 | | v+10=-39 | | -v+155=65 | | -w+157=213 | | 193=135-y | | 13w-4w=27 | | 170=y+238 | | 30x^2(x-4x(x=0 | | 12x-2+3x=1/2(x+6)+2 |

Equations solver categories