If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(2/3)n=2/9
We move all terms to the left:
3(2/3)n-(2/9)=0
Domain of the equation: 3)n!=0We add all the numbers together, and all the variables
n!=0/1
n!=0
n∈R
3(+2/3)n-(+2/9)=0
We multiply parentheses
6n^2-(+2/9)=0
We get rid of parentheses
6n^2-2/9=0
We multiply all the terms by the denominator
6n^2*9-2=0
Wy multiply elements
54n^2-2=0
a = 54; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·54·(-2)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*54}=\frac{0-12\sqrt{3}}{108} =-\frac{12\sqrt{3}}{108} =-\frac{\sqrt{3}}{9} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*54}=\frac{0+12\sqrt{3}}{108} =\frac{12\sqrt{3}}{108} =\frac{\sqrt{3}}{9} $
| 3x+1+55=90 | | n+1÷5=-6 | | I2m+7=11 | | 192=1/2•b•12 | | 7a=3=38 | | 55-5x=545 | | 15w=11w+2(3w-1) | | 12x+26=386 | | -4y+8=-2y-6 | | √4x-1=3+2x | | x+59+x+51+84+A=180 | | 3y=81y | | 10-3u=-10-u | | -5=3(1/2)x | | n+1/5=-6 | | 16.) 5+(x÷4)=-2 | | -10+5t+3=5+3t | | 4(3b‑1)=9‑b | | 33.49=7g+3.67 | | 7x=9-5x=12+5x-9 | | -5=31/3x | | 4+7=5x-11 | | 1+6x=3x-19 | | -10-4b=-3b | | (1)/(2)x+4=-(1)/(4)x+(5)/(2) | | -7t=-10t+9 | | 14p-8=32+20p | | (x+15)=(4x-30 | | 2n/8+2/8=n/3 | | (x+15)=(4x-30) | | 2x+9=89x= | | 4(x+5)=7x-4+9x |