3(1/2x+4)-10=1/5x+28

Simple and best practice solution for 3(1/2x+4)-10=1/5x+28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(1/2x+4)-10=1/5x+28 equation:



3(1/2x+4)-10=1/5x+28
We move all terms to the left:
3(1/2x+4)-10-(1/5x+28)=0
Domain of the equation: 2x+4)!=0
x∈R
Domain of the equation: 5x+28)!=0
x∈R
We multiply parentheses
3x-(1/5x+28)+12-10=0
We get rid of parentheses
3x-1/5x-28+12-10=0
We multiply all the terms by the denominator
3x*5x-28*5x+12*5x-10*5x-1=0
Wy multiply elements
15x^2-140x+60x-50x-1=0
We add all the numbers together, and all the variables
15x^2-130x-1=0
a = 15; b = -130; c = -1;
Δ = b2-4ac
Δ = -1302-4·15·(-1)
Δ = 16960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16960}=\sqrt{64*265}=\sqrt{64}*\sqrt{265}=8\sqrt{265}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-130)-8\sqrt{265}}{2*15}=\frac{130-8\sqrt{265}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-130)+8\sqrt{265}}{2*15}=\frac{130+8\sqrt{265}}{30} $

See similar equations:

| 5.6x-10.4=6.4 | | 10(x-)=30 | | 0.8x=3.76 | | X=-2/3y+3 | | 43=6.6/x | | 6y+20=7*10 | | -3=-11-11/y | | 6(1/2x+4)-12=4(x-5)+2x-1 | | 39-x=32 | | 4x=35-3 | | 2x-1+48=4x | | 5(7x+1)=8(x+3)+8 | | 2(n+2)=4n+-2n | | 39+x=2.5 | | 6(2x+4)-8=5x+3 | | x+38+45=10x-10 | | 8x+45+31=28x-26 | | 5c=34-c | | 8(x-1)+9=6x+2(2+x) | | 3x-26+46=5x-31 | | 2.5x-7=18 | | 5m-15=20-5m | | -86-x=110 | | 12x15=2x+35 | | (-x)+8=4 | | 14-65=25+x | | -150+x=0 | | 50/100=x | | -6+8w=-4-7 | | 50/100=60/x | | 50/100=1/x | | -7k-8=10k+8+k |

Equations solver categories