3(1+2p)p=38+p

Simple and best practice solution for 3(1+2p)p=38+p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(1+2p)p=38+p equation:


Simplifying
3(1 + 2p) * p = 38 + p

Reorder the terms for easier multiplication:
3p(1 + 2p) = 38 + p
(1 * 3p + 2p * 3p) = 38 + p
(3p + 6p2) = 38 + p

Solving
3p + 6p2 = 38 + p

Solving for variable 'p'.

Reorder the terms:
-38 + 3p + -1p + 6p2 = 38 + p + -38 + -1p

Combine like terms: 3p + -1p = 2p
-38 + 2p + 6p2 = 38 + p + -38 + -1p

Reorder the terms:
-38 + 2p + 6p2 = 38 + -38 + p + -1p

Combine like terms: 38 + -38 = 0
-38 + 2p + 6p2 = 0 + p + -1p
-38 + 2p + 6p2 = p + -1p

Combine like terms: p + -1p = 0
-38 + 2p + 6p2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-19 + p + 3p2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-19 + p + 3p2)' equal to zero and attempt to solve: Simplifying -19 + p + 3p2 = 0 Solving -19 + p + 3p2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -6.333333333 + 0.3333333333p + p2 = 0 Move the constant term to the right: Add '6.333333333' to each side of the equation. -6.333333333 + 0.3333333333p + 6.333333333 + p2 = 0 + 6.333333333 Reorder the terms: -6.333333333 + 6.333333333 + 0.3333333333p + p2 = 0 + 6.333333333 Combine like terms: -6.333333333 + 6.333333333 = 0.000000000 0.000000000 + 0.3333333333p + p2 = 0 + 6.333333333 0.3333333333p + p2 = 0 + 6.333333333 Combine like terms: 0 + 6.333333333 = 6.333333333 0.3333333333p + p2 = 6.333333333 The p term is p. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. 0.3333333333p + 0.25 + p2 = 6.333333333 + 0.25 Reorder the terms: 0.25 + 0.3333333333p + p2 = 6.333333333 + 0.25 Combine like terms: 6.333333333 + 0.25 = 6.583333333 0.25 + 0.3333333333p + p2 = 6.583333333 Factor a perfect square on the left side: (p + 0.5)(p + 0.5) = 6.583333333 Calculate the square root of the right side: 2.56580072 Break this problem into two subproblems by setting (p + 0.5) equal to 2.56580072 and -2.56580072.

Subproblem 1

p + 0.5 = 2.56580072 Simplifying p + 0.5 = 2.56580072 Reorder the terms: 0.5 + p = 2.56580072 Solving 0.5 + p = 2.56580072 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + p = 2.56580072 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + p = 2.56580072 + -0.5 p = 2.56580072 + -0.5 Combine like terms: 2.56580072 + -0.5 = 2.06580072 p = 2.06580072 Simplifying p = 2.06580072

Subproblem 2

p + 0.5 = -2.56580072 Simplifying p + 0.5 = -2.56580072 Reorder the terms: 0.5 + p = -2.56580072 Solving 0.5 + p = -2.56580072 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + p = -2.56580072 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + p = -2.56580072 + -0.5 p = -2.56580072 + -0.5 Combine like terms: -2.56580072 + -0.5 = -3.06580072 p = -3.06580072 Simplifying p = -3.06580072

Solution

The solution to the problem is based on the solutions from the subproblems. p = {2.06580072, -3.06580072}

Solution

p = {2.06580072, -3.06580072}

See similar equations:

| 6x^2+21x+4x=0 | | Xa-bx=2 | | x-2x=-1260 | | -2(3a+8)=5(a-1) | | z+17=25 | | x-17x+30=0 | | x+(x+1)/4=2x+(5-3x)/2-(x-3)/8 | | -5x-3=10-5x | | 44=4y+16 | | 4x+3(4x+7)=4(7x+3)-3 | | 9-r=21r-19 | | 18y=36-3x | | x+x-90=0 | | 9(x+8y+8)= | | x^2-18xy+32y^2= | | -15-3t=-3 | | x-9x+20=0 | | 26x+16=38 | | 4x-5-11x=23-3x | | 6-5p=6-5p | | M^2-56=m | | x-18x-40=0 | | 3+-5=16 | | 3(6-x)=-1 | | 11x=43 | | 6-9x=5x-8x+0 | | 3.0=16t^2+40t+4 | | X-3+8=-2x-1 | | x-x-90=0 | | 2h^2+10h+3=0 | | 8x=11x-2 | | 3(x-4)-2(6+4x)=111x |

Equations solver categories