If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+13z+15=0
a = 2; b = 13; c = +15;
Δ = b2-4ac
Δ = 132-4·2·15
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*2}=\frac{-20}{4} =-5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*2}=\frac{-6}{4} =-1+1/2 $
| -4(z+3=-8 | | 24d=360 | | 4(z+3=-8 | | -8(-7x-1)=56x+8 | | 2/3(6x-15=4x+2(x-13) | | 2.1/x=10.1 | | -(-x-7)=x+6 | | .25*100=0.18*x | | -2(7x-4)=-14x+7 | | 130=x+2 | | 14.9=8.6-0.9x | | x(.4)=7900 | | 4(x+3+3x=-2x-3x+12 | | -0.4(3x-1)+8(0.8-0.3)=5(3.8x+4) | | 2.6x-3.4=5.6x=9.2 | | 12+15x=10x+43 | | 11x=7=-2x-6 | | 15x+12=10x+43 | | 6x+10-8x=3 | | h+17=21 | | 20+h=70 | | -1-7x-3=1x+10-10x | | (15x+8)+(9x+26)=180 | | 6x+1=-13x-16 | | 48=n+28 | | 5x=28+9x | | 26=j-5 | | 2-3*4+8=x | | b-18=8 | | 3(1+5x)-7x=-11+6x | | 9=(8c+15/c) | | 2y=36-7y |