2z+4z/183.25z=z

Simple and best practice solution for 2z+4z/183.25z=z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2z+4z/183.25z=z equation:



2z+4z/183.25z=z
We move all terms to the left:
2z+4z/183.25z-(z)=0
Domain of the equation: 183.25z!=0
z!=0/183.25
z!=0
z∈R
We add all the numbers together, and all the variables
z+4z/183.25z=0
We multiply all the terms by the denominator
z*183.25z+4z=0
We add all the numbers together, and all the variables
4z+z*183.25z=0
Wy multiply elements
183z^2+4z=0
a = 183; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·183·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*183}=\frac{-8}{366} =-4/183 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*183}=\frac{0}{366} =0 $

See similar equations:

| 4y2+y2=17 | | 9m-2(3m+4)=3(m+18) | | 2x-6-x=23 | | 5-(.5g)=12 | | .03x-5=1.1x-17 | | 3x+18=-6x-23 | | 5x-15+7x+49=40 | | 180=3x-2 | | (16+14)x=270 | | 3x-4-2x=x+8 | | 180=3x+2 | | 3x+x-5=9 | | 26-x=3x+10 | | 8x+1=6x-11 | | 3x-2x+10=-7 | | 2m+6m=-325-m | | 4b+8=4(b+2) | | 39-4x=19+6× | | -5x^2-11x=-7 | | 22x+10=10x-20 | | 12x+2=2+12x | | 8+w=11;w=3 | | 8-3x-4=24 | | X-3/7+x+7/5=8/7 | | 12^2+y^2=13^2 | | x-4.2=3.7 | | 7-x-5=18 | | x/x-7=13 | | 52=13p | | 0.08s=2560 | | (x+5)^2+6=70 | | 8x-8-17x-34=16x-26 |

Equations solver categories