If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-8y+1=0
a = 2; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·2·1
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{14}}{2*2}=\frac{8-2\sqrt{14}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{14}}{2*2}=\frac{8+2\sqrt{14}}{4} $
| 2x+1=x+75 | | x+12=3x2 | | -10|-3+x|=-50 | | 10-6|7p+4|=-56 | | 14=-x+5 | | x/2+11=22 | | 6*x=560 | | -76=x+29 | | 3x-17+2x+2+90+90=360 | | 10x^2=410 | | 10x+2(5x+11)=22 | | 5+-x=14 | | 4=-5y+6 | | 4x^2-16x=8+0 | | -8(x-2)+6x=36 | | 0.4e=30 | | 5/8.u=5 | | 5(m+2)=m+4 | | 10−7m=–5m | | 8x–15+3x=45+10x | | –2y=–y+9 | | 6p+2=14 | | 2x-15=0.5x+15 | | 10^3x=42 | | 30x4=3x4 | | 4.5x=31.6 | | y=100(1.8*10) | | 5t+8+68=180 | | 137-v=197 | | 18x–12=14x+8 | | 2.3w+9=4.1w | | -5n-4=-79 |