If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-50=0
a = 2; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·2·(-50)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*2}=\frac{-20}{4} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*2}=\frac{20}{4} =5 $
| -10x-9x-13=-1x+28 | | 90=0.5h(6+3) | | 57(46x-265)=115995 | | -17x-18=15x-2 | | 4x+3-5x=21 | | 2(2x+2)=-5(5x-3) | | -2x/5-4=18 | | 10x+8=2x+7 | | -55=-v/8 | | 10x-10÷5=-18 | | 1/2y-2/7=1/7y-7/2 | | 250+.30x=300+.10x | | (33+x)+33+x=180 | | 4bXb=12 | | v/4+8=9 | | x=3x-1.2 | | -y/5=-28 | | y/5=-28 | | -a+4=22 | | 3(4-x)/10=-4x | | -2(x-1)-2=7-4(x+6) | | 4(3x+2)=-3(2x-4)+5x | | P(-x)=4x-1 | | 15=−3(2p−1) | | 9s+54=86s-10 | | (38+x)+102+x=180 | | -3-9v=60 | | 72/3/3=y | | 4/5=16/20=8/10=x/25 | | 3u+8=2u+21 | | x-4x^2=44 | | 30x/12=12x+12 |