If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-450=0
a = 2; b = 0; c = -450;
Δ = b2-4ac
Δ = 02-4·2·(-450)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*2}=\frac{-60}{4} =-15 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*2}=\frac{60}{4} =15 $
| 3(a-7)=4a | | 6(y+1)-4y=y(y+1) | | X2-11=8x | | 6x+2=3x-26 | | 4n^2-54=-6n | | X2-3x=35 | | 3/14+x=1/2 | | (14x-44)=180 | | 1y2-6+1=0 | | 1/2n+45=172n= | | 1y2-6-1=0 | | -1y2+6-1=0 | | 3/5m+1/2m-4=7/10m | | 4x+1=6.5 | | -20.4=-0.6x | | 4d-9d=8d | | x+2=-14+x | | 3x+10=9x-26* | | 5x+5/2=8x+6/3 | | 144/x=8 | | x–6=-24 | | -5q=-6q-9 | | 8y-2=-7y+28 | | 9x2+392=0 | | 12j-9j=12 | | n=-4n+15 | | 14q+-3q=11 | | -2+2q=-18 | | 19c=-3+20c | | -(k+7)=-13 | | 9(x-5)=12x+63 | | 5x-8=7×+10 |