If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+8y-10=0
a = 2; b = 8; c = -10;
Δ = b2-4ac
Δ = 82-4·2·(-10)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12}{2*2}=\frac{-20}{4} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12}{2*2}=\frac{4}{4} =1 $
| 2/3(6x-9)-2x=20 | | 12(x+5)=18x | | 2(3x+7)=x+10+5+4 | | 8=3m+5+4 | | 3y-8=5y+10y= | | x/12=2.7 | | H(x)=4/x-3 | | 2m189m3m=22 | | (3y+7)(9y+5)=180 | | (4x+3)=51 | | x+0.02=0.0018x= | | 7x+8=x+12+3x+20 | | (2–x2)–(3x2+4x)–(-1–2x)= | | 12×4/5(x+15)=4 | | -3g+14=-2(g+1 | | 7=n+12 | | 10y+5=2y+85 | | 83p=10 | | 7x–12=9x | | (75x-30)+(30x+60)=180 | | y=17*0.064+6 | | f2-3f+2=0 | | 3x²-4=503 | | 10x-12=12x+28 | | y=17*0.16+6 | | (2x+1)+(x-25)=180 | | 4x-10=x+9+x-5 | | y=17*0.4+6 | | |x-7|-5=17 | | 8x-12=3x+4+x+20 | | 7y-6=9+2y+1 | | 9b+19=73 |