If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+29y-15=0
a = 2; b = 29; c = -15;
Δ = b2-4ac
Δ = 292-4·2·(-15)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-31}{2*2}=\frac{-60}{4} =-15 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+31}{2*2}=\frac{2}{4} =1/2 $
| (8x+7)+(9x-4)=180 | | -18-2x=58 | | -10(a+7)=-180 | | 11+3(2x-1)/2=20-x | | 18x2-40x+42=0 | | 5x+13+143=180 | | 3/2(x+5)=17+5x/2 | | (141+2x)+(2x+21)=174 | | 0.75x+80=335 | | 5(x+2)/2+1=4x | | 82=6x+5(5x+4) | | 8(9x-3)=45 | | -2x-8+7x+2= | | 0.25r-0.5r=0.5-0.25 | | -5n(2n+3)+3(3n+4)=-8 | | 7x-1=3x-53 | | 2p/5+3=-1 | | 4x-50=2x-18 | | 4(2(6)-3)-3(6)=13+5(6-b) | | 4(2(6)-3$-3(6)=13+5(6-b) | | (x-90)=16 | | 3.3g+5=1.3g+17 | | (x.90)=16 | | 180=3x-4+12 | | 9x-18=540 | | 180=6x+20+10x | | 2l=13 | | 6+-4x=6x+-8x+6 | | 180=4x+14+8x+10 | | 9x-2=3x34 | | |4y+11|+10=7 | | 2a^2+3=93 |