If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+23y-36=0
a = 2; b = 23; c = -36;
Δ = b2-4ac
Δ = 232-4·2·(-36)
Δ = 817
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{817}}{2*2}=\frac{-23-\sqrt{817}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{817}}{2*2}=\frac{-23+\sqrt{817}}{4} $
| c-4-6c=-21 | | 5x-2=3+5x-5 | | -5x-123=4x+93 | | .29(4)+0.79x=9.11 | | 7b-8=5b+24 | | q-6q=9. | | 2=2-t/3 | | y2+8y-12=0 | | Y=15x-40x=3 | | -4x+5=-13x+19 | | 4a+1=19+a | | 7x=36-4 | | x^2+7x+20=10 | | 0=x^2+14x-48 | | 9x-93=124+2x | | 6x-45=43+2x | | y=4.8-0.2y | | 3y=200 | | n+(-n)=3-15 | | V(x)=(12-2x)(10-2x)(x) | | y2=180 | | 4n+4=28+8 | | 0=3/4(x-5) | | 40=b+10/3(5) | | 5(2x=7)=65-4(7x-2) | | 4.3−3=b | | 60-7x=10+3x | | w-4/6=3 | | -11+6y=-1+-4y | | 7=12•y | | 1+2^n+2^2n=73 | | $3.4m=20.4 |