2y+2y+5/2y+7/2y=360

Simple and best practice solution for 2y+2y+5/2y+7/2y=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y+2y+5/2y+7/2y=360 equation:



2y+2y+5/2y+7/2y=360
We move all terms to the left:
2y+2y+5/2y+7/2y-(360)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
We add all the numbers together, and all the variables
4y+5/2y+7/2y-360=0
We multiply all the terms by the denominator
4y*2y-360*2y+5+7=0
We add all the numbers together, and all the variables
4y*2y-360*2y+12=0
Wy multiply elements
8y^2-720y+12=0
a = 8; b = -720; c = +12;
Δ = b2-4ac
Δ = -7202-4·8·12
Δ = 518016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{518016}=\sqrt{64*8094}=\sqrt{64}*\sqrt{8094}=8\sqrt{8094}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-720)-8\sqrt{8094}}{2*8}=\frac{720-8\sqrt{8094}}{16} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-720)+8\sqrt{8094}}{2*8}=\frac{720+8\sqrt{8094}}{16} $

See similar equations:

| 12x-3=24x+33 | | -4x+30=5x-42 | | |6n+7|=8 | | 45x=300 | | 9x+47=6x+29 | | -9p+36=18 | | 5x+17=-4x-28 | | 11b-27=-16 | | -6x+62=4x-28 | | 15t+2t-4=30 | | 2x+23=5x+44 | | 14x+6x+40=12x+120+3x | | +=2x141220 | | 9-3m=5m+10 | | -8x-34=-6x-24 | | 7/x+5=49/x+7 | | 15t+2t=34 | | 3x+28=-4x-35 | | 5x+23+11x=-8x+46+x | | 3x-2=-7x-12 | | 12x+32=4 | | (x^2-3x+2)*(x^2+7x+12)=24 | | -8x-47=7x+28 | | 12x=24x+36 | | 4x+37=7x+64 | | (x-1)(x-2)(x+3)(x+4)=0 | | -10x+26=x-7 | | 4(6x+9)=33 | | 4(6x+9)=24 | | (x-1)(x-2)-24=0 | | 4(6x+9)=20 | | 0=-0.1x^2+103x-3000 |

Equations solver categories