2y(2-2y)-5y=3y-20

Simple and best practice solution for 2y(2-2y)-5y=3y-20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y(2-2y)-5y=3y-20 equation:



2y(2-2y)-5y=3y-20
We move all terms to the left:
2y(2-2y)-5y-(3y-20)=0
We add all the numbers together, and all the variables
2y(-2y+2)-5y-(3y-20)=0
We add all the numbers together, and all the variables
-5y+2y(-2y+2)-(3y-20)=0
We multiply parentheses
-4y^2-5y+4y-(3y-20)=0
We get rid of parentheses
-4y^2-5y+4y-3y+20=0
We add all the numbers together, and all the variables
-4y^2-4y+20=0
a = -4; b = -4; c = +20;
Δ = b2-4ac
Δ = -42-4·(-4)·20
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{21}}{2*-4}=\frac{4-4\sqrt{21}}{-8} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{21}}{2*-4}=\frac{4+4\sqrt{21}}{-8} $

See similar equations:

| 5(6+3y)=-28 | | 15x+4=10x-19 | | 48=-16n | | -3/2x2-6x-8x=12 | | 11+6n=5(n+1)-2 | | 3y+2y–12=8 | | |-3x-12|=9 | | 35+x/4=23 | | 6x+2(2x-11)=78 | | 4x+14=14x+4 | | (k-2)(3k+1)=0 | | -5(-5x+30)-5x+5=-50 | | 4(8-x)=10x+12-4x | | 4y+7y=99 | | 7n+14=14+4n | | 56=-10+4x+12 | | -3(-7x+10)=159 | | 1.7m-33=-1.3-15 | | 4+h=10 | | (7b-10)=83 | | x-12=51-2x | | 5.3=r-2.7 | | 2((2x-1)(x^2-9)=0 | | 2m(5m-6)=0 | | 3-5(x+2)=-27 | | 12=x-5=31+3X | | 4y²=-13 | | 9+5(w-2)=25 | | 2h+5-5h=3h+7+10 | | 9x²=5x | | 20x-5+3x+1=180 | | -4+9s+5-6s=10 |

Equations solver categories