2x=(3x+6)(3x-10)

Simple and best practice solution for 2x=(3x+6)(3x-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x=(3x+6)(3x-10) equation:



2x=(3x+6)(3x-10)
We move all terms to the left:
2x-((3x+6)(3x-10))=0
We multiply parentheses ..
-((+9x^2-30x+18x-60))+2x=0
We calculate terms in parentheses: -((+9x^2-30x+18x-60)), so:
(+9x^2-30x+18x-60)
We get rid of parentheses
9x^2-30x+18x-60
We add all the numbers together, and all the variables
9x^2-12x-60
Back to the equation:
-(9x^2-12x-60)
We add all the numbers together, and all the variables
2x-(9x^2-12x-60)=0
We get rid of parentheses
-9x^2+2x+12x+60=0
We add all the numbers together, and all the variables
-9x^2+14x+60=0
a = -9; b = 14; c = +60;
Δ = b2-4ac
Δ = 142-4·(-9)·60
Δ = 2356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2356}=\sqrt{4*589}=\sqrt{4}*\sqrt{589}=2\sqrt{589}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{589}}{2*-9}=\frac{-14-2\sqrt{589}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{589}}{2*-9}=\frac{-14+2\sqrt{589}}{-18} $

See similar equations:

| .74(x=0)=(.74.0) | | 10+22y=98 | | 5x+25=5.5x | | -144x^2+810x-45=0 | | 3k+4=180 | | 3k+4=90 | | 3k-2=90 | | 8d+100=180 | | 8d+100=90 | | 4-2d=20 | | 2x+124=90 | | 2(5x+3)=-6x+7 | | 2(5x+3)=6x+7 | | (2.5x)*x=450 | | (4+5)(6+4x)=55-6.6(x+5) | | 2(4x+4)=-2x-9 | | -2(3r-14=4(13-r) | | 9x-3=3x+10 | | 1/3(2x+1)=6 | | 16^2x=256^2x+5 | | 4x^=-3x+10 | | 4x=-3x-39 | | -8x=1x+108 | | 3x=-6x-81 | | 17/7=10/v | | x/4-10=71 | | -18x=-8x-150 | | 9x=5x-48 | | 7^x+7^x+^1=56 | | 9h-6h=7 | | 7x9=7x5+x | | 3(6x-4)=54(7+5x) |

Equations solver categories