If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=8x+4
We move all terms to the left:
2x^2-(8x+4)=0
We get rid of parentheses
2x^2-8x-4=0
a = 2; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·2·(-4)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{6}}{2*2}=\frac{8-4\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{6}}{2*2}=\frac{8+4\sqrt{6}}{4} $
| |x-8|=17 | | 2x^2=8x+4 | | 55+85+x+45=180 | | 5x2+30x−10=0 | | (x+12)=(4x-6)=(4x-6) | | G(x)=3(-8)-25 | | F(x)=-2(-3)+7 | | 20+8m=12 | | 4x+8x=7+2 | | 7x2-25x+12=0 | | 3(x+12)^{2}+13=160 | | 7x-9=115/8 | | s=4s-84 | | s=4s-64 | | 6(x+1)/8-(2x-3)/16)=3(3/4x-1/4)-3/8(3x-2) | | 70+3x+2+90=180 | | 2z+25=5z-62 | | 4xx7=8xx2 | | 1.50r+9.95=26.95 | | 4xx7=8xx+2 | | 4x^2-8x-59=0 | | 4u+31=6u+17 | | (3x-15)+(6x+6)=180 | | 10x+7-3x=9x+15 | | -5=3d+4/3 | | 7x2-32x+19=0 | | (1/9)^(x+4)=27^(3x) | | u+9=-19 | | (3x-4)+(6x+13)=180 | | 4a+6=10a-72 | | 3n-12+4n=9 | | -8(8-x)=4/5(x-6) |