If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=3x+23
We move all terms to the left:
2x^2-(3x+23)=0
We get rid of parentheses
2x^2-3x-23=0
a = 2; b = -3; c = -23;
Δ = b2-4ac
Δ = -32-4·2·(-23)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{193}}{2*2}=\frac{3-\sqrt{193}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{193}}{2*2}=\frac{3+\sqrt{193}}{4} $
| 3m=32 | | 6x-2+2x+1=4 | | 5a-4=5a+3 | | 10(g-1)-19=3(g+6)+9 | | -17+12k=9 | | 6x+4+50=10x+10 | | –72.12=6(3d+10 | | -10d+5=-4 | | 12-0.5x=10-2x | | 7=2/3(x-6) | | 6r+43=79* | | k-46=-78 | | 8-9n=-1 | | 9c-25=c+23 | | (5x+5)+(8x+58)=180 | | x+3/4=3/4x+4 | | q/30=3 | | 5x+5=8x+58 | | 1/5+x/2=7/10 | | 3(3c-4)-15=2(c+5)+12 | | 5x+7(7x+11)=-193 | | 60+7x=-10 | | 7g-3=11 | | 8x+58=5x+5 | | 8x+10+13x-5=180 | | -5(3x-13)=2(x-1)-35 | | 1+3n-5=-19 | | 5=6x=2x-7 | | 22x+4–9(2x)=0 | | 6^3t-1=36^t-3 | | 8.5g=340 | | 3x-8+4x=-36 |