If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=2x+84
We move all terms to the left:
2x^2-(2x+84)=0
We get rid of parentheses
2x^2-2x-84=0
a = 2; b = -2; c = -84;
Δ = b2-4ac
Δ = -22-4·2·(-84)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-26}{2*2}=\frac{-24}{4} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+26}{2*2}=\frac{28}{4} =7 $
| 12(10x-7)=3(8x+15) | | 4x+6x=11 | | -4c-7=-95 | | 4=s+9/5 | | 4e-1=5e+2 | | -3y+6=81 | | k/2+9=11 | | -6-7t=-4t | | -4b+4=68 | | X2^-8x-5=0 | | -6x²+31x=56 | | a/6-2=-1 | | 1.x=27 | | 8j-5=-85 | | 4=19-3j | | 4=2(q+5)-q | | n/8+2=1 | | 2a-7=-71 | | X+3×-2+2x+3=40 | | 5(x-2)-2=2x-5 | | (7x-224)/10=43 | | X2^+4x-5=0 | | 4x2-20=44 | | x2+2x−15=0 | | -5x+14=-5x+ | | 5(x+8)=7x+44 | | 1/4=y/6 | | 5x+6=-164 | | 225+3x=125-x | | 5+0.5{6n+14=3 | | 2=8-2b | | 5x=-5-10+15 |