If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=248
We move all terms to the left:
2x^2-(248)=0
a = 2; b = 0; c = -248;
Δ = b2-4ac
Δ = 02-4·2·(-248)
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{31}}{2*2}=\frac{0-8\sqrt{31}}{4} =-\frac{8\sqrt{31}}{4} =-2\sqrt{31} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{31}}{2*2}=\frac{0+8\sqrt{31}}{4} =\frac{8\sqrt{31}}{4} =2\sqrt{31} $
| 30=-9x | | 4=6=+m/3 | | 3(2x-5)+1=-140 | | 65+x=60 | | 15.97+3.47=x | | 2j−j=4 | | 72+2m=130 | | -r+11=17 | | 18h+5h-22h=7 | | 33+91+4p-16=180 | | -2x-4x=-6x | | 1+3(9-x)-2x=113 | | 5+4b=-3 | | -2x-4x=6x | | 261=61-y | | -18+6h=20 | | 10h+3h-7h-5h=3 | | 3x+15=86+64 | | x-7+20=-24 | | a+37+3a+55=180 | | 1.5x+1.3x=-28 | | 2400=—300x | | -7+3x=11-6x | | -10+4+-2x=-4x-7 | | 3.5g+4=1.5g+12 | | 24.2=8.2+4x | | 20w-6w-6w=8 | | -18+6h=12 | | 2^(x+5)=256 | | 26=9-9v+8 | | z-7+z-17+2z=180 | | -(7+6a)=-7a-5(a-7) |