If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=23
We move all terms to the left:
2x^2-(23)=0
a = 2; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·2·(-23)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*2}=\frac{0-2\sqrt{46}}{4} =-\frac{2\sqrt{46}}{4} =-\frac{\sqrt{46}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*2}=\frac{0+2\sqrt{46}}{4} =\frac{2\sqrt{46}}{4} =\frac{\sqrt{46}}{2} $
| 89+(5x-7)=14x-1 | | 1231323x12312424421=24 | | 25a+120=50a | | 8(3x+4)=2(12x−8 | | 3.2+10m=8.87 | | 5(4x+6)=-33+3 | | 16x-20=60 | | 3.3(x-8)-x=1,2 | | 6x+64=360 | | 3x³-25-5=-3 | | 40+(9x-2)=20x+5 | | 2x+1=8x+0 | | 3x³-25-5=3 | | -14+1/2x=8 | | (15x+5)+(22x+4)=120 | | 7x−-36=1 | | .08x+3=3.8 | | 72-u=255 | | 50x+20x=600 | | 1=103w | | 30+(10x-10)=12x-4 | | -6x-2-3x=-8 | | (2m+3)÷(2m+5-m-1)÷(m-2)=0 | | -15=19r+1-7r | | 5(c-2)=5c-2 | | 2(2.2b−1.6+b)=6.4 | | 5(n-7)=30 | | 14b+21=11b | | (2m+3)/(2m+5-m-1)/(m-2)=0 | | .018b=36 | | 1/2(g+4)=4.26 | | .06e=24 |