If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=18
We move all terms to the left:
2x^2-(18)=0
a = 2; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·2·(-18)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*2}=\frac{-12}{4} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*2}=\frac{12}{4} =3 $
| 9+5x=(-6) | | 72/h=-20 | | 2x+4/5-6=8 | | x-10+2x+10+x+20=180 | | 2x2+x-10=0 | | 7(2e-1)3=6+6e | | 24.68=5g+3.63 | | M2=55-h | | 6+6x=(-60) | | 6^2x-7=7776 | | 5-5x-(10-6x)=5 | | 9^2x-6=6561 | | 5-2x+11=4x+22 | | 5^5x=3125 | | -7(6+3x)=(-84) | | 32=t/8+30 | | 7^x-2=343 | | 3w2+3w–4=0 | | 2^5x+4=512 | | M4=8k+1 | | (x-7)^2=3+23 | | 5(r+10)=20 | | 4g+3=3g+6 | | 1/3(4x-1)+2/5(2x+5)-5(14/15)=0 | | 11^x-1=1331 | | 0=11/9(x+5)+6 | | -8r+1=-15 | | 6x+39+4x+31=180 | | -4x-1+3x=5 | | 9^3x+3=6561 | | 5w=-6w | | 3x-6-1+4x=25-x |