If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-9x=425
We move all terms to the left:
2x^2-9x-(425)=0
a = 2; b = -9; c = -425;
Δ = b2-4ac
Δ = -92-4·2·(-425)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-59}{2*2}=\frac{-50}{4} =-12+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+59}{2*2}=\frac{68}{4} =17 $
| 5(x+1)+5=30 | | 7/4y-5/8=0 | | -2-16x=-17x+11 | | n-5/4=n/6 | | -2-16x=-17+11 | | 5/14=x/10 | | -2x+2=−2x+2=x-13 | | -8u+14=6(u-7) | | 30=4(w+3)-6w | | 8x+10x=36 | | 30=4(w+3)=-6w | | 32−3b=8b= | | 6x-4/8=7 | | -7(x-5)=5x-49 | | -7x-5=−7x−5=-10x-26−10x−26 | | 3(y-7)-6y=-15 | | -2×/2=-x | | (3x+40)=(x-20) | | a-(2a+4)=-9 | | x*7-9x/2=97 | | (6/13)^p*(6/13)^4=(6/13)^-4 | | 4(t-3)=0 | | A=(188x168)/144 | | A=158x14 | | 7^m-5=1 | | x^2(x^2+31)=180 | | 2u+9=8u+12 | | a=52÷13 | | -28+5x=2x+14 | | -28+5x=2x | | 37w-14=40 | | 7(x-2)+9=4x+3(-3+x) |