If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x=192
We move all terms to the left:
2x^2-8x-(192)=0
a = 2; b = -8; c = -192;
Δ = b2-4ac
Δ = -82-4·2·(-192)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-40}{2*2}=\frac{-32}{4} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+40}{2*2}=\frac{48}{4} =12 $
| x*7/6=x+2/9 | | 3x-3-8=9+4x | | 7x+21=3x+15+8x+2 | | 3^2/3=9x^2/3 | | 9x-4=1.5x-4 | | 2^(2x)*2^(x-2)=12 | | 3t+1/2=4 | | 3t+1=4 | | 7x-48=+15-2x | | 24=3.14xR | | 3k-1=10÷2 | | 5+3k=11 | | 40x-40=160 | | 40x-20=160 | | 40x-12=160 | | 40x-12=120 | | 40x-20=110 | | 40x-7=120 | | 40x-8=120 | | 40x-10=120 | | 40x-12=122 | | 43x-24=172 | | 43x-18=172 | | 2x=42÷15 | | 43x-84=172 | | 43x-92=176 | | 5(x+3)=2x-20 | | t÷4-2=15 | | 43x-96=175 | | 43x+96=175 | | 43x+96=175-12 | | a÷6+6=15 |