If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x+5=0
a = 2; b = -8; c = +5;
Δ = b2-4ac
Δ = -82-4·2·5
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{6}}{2*2}=\frac{8-2\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{6}}{2*2}=\frac{8+2\sqrt{6}}{4} $
| 7/9u=35 | | -10=-5x+6x-10 | | 36.1=4.6x-7.6 | | 3+7p=-32-11p | | 3x^2-8-40=0 | | 4x-13=105 | | -1.2x=7(x+2.5) | | -12=4x-3x-1 | | X2-10x+27=0 | | 7u+29=2(u+2) | | 18x+15=-30 | | 1.08x10^15=2.7x10^11 | | 3x-6+3x=-12 | | 13x+6=14x-3 | | 8+n/44=3 | | 326=5(8x+8)+6 | | 10x+90=4x+120 | | 20=6h | | X=2x-250=x+(2x-250)=2858 | | 2x=90-8x | | 1p-10p=-27 | | 3/4n+2/3=10/3 | | 2+3a=3a+2 | | 4y+-9=34 | | 3x+6+9=x+19 | | u/7+6=3 | | 82=2x-2 | | 0.5x+7=4x-1 | | 9n=45=12n-51 | | 0.29+10f=0.35f | | +2×n5=11 | | -153=-7(-3-5a)+1 |