If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-7x=39
We move all terms to the left:
2x^2-7x-(39)=0
a = 2; b = -7; c = -39;
Δ = b2-4ac
Δ = -72-4·2·(-39)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-19}{2*2}=\frac{-12}{4} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+19}{2*2}=\frac{26}{4} =6+1/2 $
| 10=-4v+2(v+8) | | h=4+65(1)-16(1)^2 | | 51=4x/5+28 | | 9+3p-12=0 | | 27.5=16t^2+2t | | 4•x=30-2x | | -100-4x=68-12x | | 2x+5×=100 | | 88=8(k+5)k= | | -63+12x=5x+49 | | 4x2-56x+268=0 | | 2(x-1)=3x-24 | | 4s+4=-8-2s | | 6-4w=2w+3 | | 0.25x+12=0.50x+10 | | 10x-129=2x+63 | | 8x+2=5x-30 | | 6z+7=2z-17 | | 0=-16x^2+136x+250 | | 0=-16x+136x+250 | | 5(1+s)=-9+6 | | 4x+2x=6+6 | | -73-10x=-3x+109 | | 5m=-3m+16 | | q=242.4-2+6+7-11 | | 7x+3.32=3x+10 | | 12(2c-4)=4c-2 | | 1m=-6m+25 | | 5x+(-3)=-28 | | 1=10+p/24 | | 2×+3y=3 | | 3(x-8)+6=4x-12 |