If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-7x-15=0.
a = 2; b = -7; c = -15;
Δ = b2-4ac
Δ = -72-4·2·(-15)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-13}{2*2}=\frac{-6}{4} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+13}{2*2}=\frac{20}{4} =5 $
| p/6.40=4 | | 3n-9=45 | | 3/5x=1/4x+200 | | y2+2y=48 | | 14x+10=46 | | 56=12+1x | | 2^x+3=8^{-3x} | | 1/4=8w | | (7/20)x=200 | | 2(x-5)=4x-(10+2x) | | -y+231=146 | | 6x²=78 | | 7/20x=200 | | 159=-u+19 | | 9*3^(5x-3)=69 | | m3=102 | | 3x+100=30 | | (3x^2-7x-4)-(6x^2-6x=1) | | 15x-19=11x-2 | | 2(b+8)-9=3 | | 3(q-7=27q= | | 6x-0=-6 | | 75=(50+52+77+88+91+x)÷6 | | 3x47=10x-37 | | 4(x+8)^2-44=24 | | (18-w)(2w+4)(w)-1152=0 | | “/36=x/24 | | 42÷k=14 | | x^2+72x-135=0 | | X=6x=21+15=3x | | (18-w)(2w+4)(w)=1152 | | x^2+8x-3=-2x-3 |