If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-780x+44600=0
a = 2; b = -780; c = +44600;
Δ = b2-4ac
Δ = -7802-4·2·44600
Δ = 251600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{251600}=\sqrt{400*629}=\sqrt{400}*\sqrt{629}=20\sqrt{629}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-780)-20\sqrt{629}}{2*2}=\frac{780-20\sqrt{629}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-780)+20\sqrt{629}}{2*2}=\frac{780+20\sqrt{629}}{4} $
| -4.75=2z | | w*3/10=2 | | 7x+8=6x+1* | | 3x-8+2x-2=30 | | -6(m+9)+1=19 | | 5c-6=24 | | −4.75=2z | | (x+3)²=7 | | 3x+2=−8x+90 | | (9x-35)-35=53-35 | | 3g+6-2g=7 | | z/9=1/4 | | 5k+11=46 | | (x-1)/3=(x+2)/5 | | 2/3x(6x+3)=4x+2 | | 0002n+15=2 | | s/2.3=4 | | x-10+x+4=180 | | x-44=7(2x+3)-13 | | 7x-8=113 | | -3(4x-3)+43=4(6x+1) | | x/16=4/9 | | 16/x=4/9 | | -(1-7x)+36=-6(-7-x) | | 1*1.4=s | | t/10=7/10 | | 2w-12+2w=4w-12 | | y²-3y-10=0 | | 9*w=9/10 | | m=23×5 | | 18(30)=24x | | 3x²-7=17 |