If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-6x+3=0
a = 2; b = -6; c = +3;
Δ = b2-4ac
Δ = -62-4·2·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{3}}{2*2}=\frac{6-2\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{3}}{2*2}=\frac{6+2\sqrt{3}}{4} $
| 2x+6(4x-10)=70 | | r/3.2=2.7/2.4 | | c−5=- | | x*8=54 | | 2k+4(4k+2)=62 | | 10-d=16 | | 5x+5(2x-11)=35 | | 8(x-4)+8=8x+6 | | 7x+5(5x-9)=243 | | .3*9=6*x | | 2.5m=4.7m+7.7 | | -1/4x-2x=9/16 | | -1/4.x-2.x=9/16 | | -16t^2+64t-20=0 | | -60=4(-3-4x) | | 7x+2(7x+6)=243 | | -1/4.x-2.x=9/19 | | 2/5x=36 | | 2/3x+6=1/2x-7 | | √3x+7=1+√3x-2 | | 7m/4+3/2=9m/4-8/4 | | 6x+3(6x-16)=144 | | -5(4k-2)=3k+33 | | 3(1+4x)+2=-43 | | 39/4=156/t | | 4x+5(2x-6)=124 | | 4x-21=9x-16 | | 34+7x=90 | | 3/28=h/64 | | 2x+4(4x-13)=164 | | P^2-8p-3=5 | | 180-85-60=x |