If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5x=0
a = 2; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·2·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*2}=\frac{10}{4} =2+1/2 $
| 16=2y+6(y+8) | | 2.5x-15=2x | | x^2+6x-17=35 | | 4(u-7)-7u=-22 | | Y=4x+9;(-2,1) | | 3j-16=58 | | 5z-4(7+3z)=9z+12 | | 5x+4=26-3x | | k/5-13=42 | | 3^2x+3^x-2-22=0 | | k+3=14 | | 3a/4=45 | | 5+x-12=2x-7. | | x/8=-46 | | 2x^2=10-16x | | 41=12d−741 | | 11x-22=11x-22 | | 10x+18=x-81 | | -27=15x | | -5x-5(-x+13)=5 | | -5x-5(-x+13)=3 | | 1/6x-5/6=1/2x+3 | | 20=-y/6 | | (2x-23)=(x+20)=90 | | 3^2x=2^x+7 | | 243^2x+4=81^x+2 | | k-11.2=36.7$ | | x^2+6x+18=35 | | $k-11.2=36.7$ | | -8=-1x+5-1 | | -6x-2(5x-9)=-62 | | 2x+1=2/5(3x+3) |