If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x-10=0
a = 2; b = -4; c = -10;
Δ = b2-4ac
Δ = -42-4·2·(-10)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*2}=\frac{4-4\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*2}=\frac{4+4\sqrt{6}}{4} $
| 28=0.3r^2 | | -8x+8-6x+20=90 | | 12.5x=-13.5 | | 18t+86+58=180 | | 22c+40+30=180 | | 9v+72+45=180 | | (-8x+8)+(-6x+20)=180 | | 7z+33=180 | | 2/3(9−12x)−8x=24 | | 23(9−12x)−8x=24 | | 3x+7=2×+5 | | 3=a-16 | | –8=2(w+6)+–2 | | 16x^2+15x+94=0 | | -16=a-(-2) | | x+(+8)=32 | | 1☆☆21=46+x | | -5(x-1)=-5x-5 | | x3+9x2+2x-48=0 | | −6(2y+7)=14−4y | | 3(j+1)=9.9 | | 0.25(c+8)=3 | | 36=73-x | | n/15=54/81 | | 5x+10=7x/18 | | 11/n=330=450 | | P(y)=100/y+2y | | -12=k2 | | 15-u=158 | | 0.8x-5=0.2+7 | | -1-x=-11 | | -16k=80 |