If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-3x-36=0
a = 2; b = -3; c = -36;
Δ = b2-4ac
Δ = -32-4·2·(-36)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{33}}{2*2}=\frac{3-3\sqrt{33}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{33}}{2*2}=\frac{3+3\sqrt{33}}{4} $
| 14.1(2.37y+5.6)=0.71y-29.3 | | 5/7.11/12.x=1 | | 1=r+-5 | | 10/11.11/13.x=1 | | x2+5x-126=0 | | x2+3x-180=0 | | 3y-6+2=-y | | -1=w+1 | | 9n+14=6n+27 | | -6d=-16 | | 3x^-14x+8=0 | | (x-5)/6=(x+3)/4 | | 11/13.x=1 | | 44=-8w-3w | | 3z/7+2=6 | | -10+5r=-7-12-10 | | -19.x=1 | | 10+n=2 | | 8.x=1 | | 6b=8b^2 | | -4(-3x+4)+4(-7+5x)=-18+33x | | 9(p-17)=10 | | 4/5=-6+6x+10/44x-1 | | 2(8x+5)=-22= | | 0.4(x−1,000)+1.1=2.9+0.2x | | 4x+4=2x+10= | | 4x+1=2×+12 | | -6+n=2 | | 4x-14/5=-5+5x+10/4 | | (e+2)×6=42 | | Y+z=-6 | | 2x+33=4x-7 |