If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-2x-3500=0
a = 2; b = -2; c = -3500;
Δ = b2-4ac
Δ = -22-4·2·(-3500)
Δ = 28004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28004}=\sqrt{4*7001}=\sqrt{4}*\sqrt{7001}=2\sqrt{7001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{7001}}{2*2}=\frac{2-2\sqrt{7001}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{7001}}{2*2}=\frac{2+2\sqrt{7001}}{4} $
| 2(c+3)+5c=15−(2c+18 | | -2+8=3x+3 | | 42-5x=20+6x | | 18z-10=17z | | 4x−8=124x−8+8=12+84x=2044x=204x | | –8n=–9n+n | | 5x+7=5(x+10) | | -14=h-22 | | -6+5n=-3(8n+2) | | 4x=28+7x | | 6+8x−x2=0 | | z(6z-5)(z+z)=0 | | 3x+1+5=120 | | 6x-9=2(3x-6)-2 | | 4z+1=z+6 | | 32-12x=6 | | 2x2-2x2-3500=0 | | 8s-15=18+9s-13 | | 4x+8x+120=180 | | 8x-3(2x-15)=55 | | 2x+3-3(x-2=5 | | 2x+6+4x+36=180 | | 4z*1=z+6 | | 5x+7=5x+50 | | z(6z-5)(z+2)=0 | | b+8=3b-1 | | 3r+27=8r+64 | | 2x-3500=0 | | 2-5n+5=27 | | -4x-7+10x=-7x+6x | | 81=9n-7 | | 3x+3(-6x-21)=-183 |