If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x+48=0
a = 2; b = -20; c = +48;
Δ = b2-4ac
Δ = -202-4·2·48
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4}{2*2}=\frac{16}{4} =4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4}{2*2}=\frac{24}{4} =6 $
| 3.8n-13=1.4n+5 | | 11+7p=31 | | 1/5=8/x | | 3x+2-2x=x+5 | | -4(6-x)=0.8(x+2) | | 2n+1=5n+24 | | 4x2^(7x)=48 | | 6(-2+k)=6k-12 | | 6=-10(-3+x) | | -9/3v+4/5=7/8 | | -4(5+5x)=-33-7x | | 2n-12=88 | | 4(2y+1)=2(y-15)-2 | | −6(3i)(−2i)= | | X-2x+30=40 | | 7y+27=7y+27 | | 3f+6+7f=14 | | 3(x+4)+3=18 | | 494=26f | | -4(6-x)=4/5(x+2) | | 12+3w=6w-3 | | (2x+7)=(6x-19) | | 2x+43-2x+3=180 | | 4/11=x/44 | | 2x+5+4x=5x+3 | | 160=(12+x)x | | 2(h+6)-4h=20 | | –2u+8u=6u | | 1.75x+10=3.5-16.25 | | z+252=674 | | (11y-36)63=180 | | 8=4(f-14) |