If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $
| -s-1=s+15 | | -7-s=-2s | | 13+13w=12w | | -5(-3x+1)-3x-2=31 | | 30=v/5-14 | | 8f-20-4f=-f+20 | | 134+5x+2x+6x=180 | | 3x×√64=24 | | -18n-3=90 | | 1+2f=5f+7-4f | | -3x−8x=15 | | 2(3x)=x+90 | | 1+2f=5f+7−4f | | 4+8c=-10+c | | -1/3)6x+18)=10 | | 3x(2)=x+90 | | 4a-(3a)=17 | | x-6+2=16 | | -w-9-4=3w+7 | | -5(5-2x)=65 | | 18.666×3=x | | 5/3=m/m-4 | | 2x+25=x+30 | | -3x−1(-8x)=15 | | -5g=-8-6g | | 2x=25=x+30 | | 10f+4=-9-3f | | 0.5(x+2)=1/3(2x+2) | | 2w+7=3w-12 | | 2.5x+1.2x=3.5 | | 3s=-7s-10 | | 12+8x=3x+62 |