If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19=0
a = 2; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·2·(-19)
Δ = 152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{152}=\sqrt{4*38}=\sqrt{4}*\sqrt{38}=2\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{38}}{2*2}=\frac{0-2\sqrt{38}}{4} =-\frac{2\sqrt{38}}{4} =-\frac{\sqrt{38}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{38}}{2*2}=\frac{0+2\sqrt{38}}{4} =\frac{2\sqrt{38}}{4} =\frac{\sqrt{38}}{2} $
| 2n+50=n+50 | | 5/w=3 | | 5.x-7=-3 | | 2-(4y-5)=18 | | 9=9/h | | 0.15(y0.2)=20.5(1y) | | x2-0=100 | | x2+7x=10=0 | | y+(0.19*y)=61 | | 5x-8=x | | 3(u-8)-7=-3(-7u+9)-8u | | 0.7x+0.4(20)=0.5(x+40) | | 18=m5+3 | | 10x-(4x+7)+16=3x | | F(x)=-(x+1)^2-4 | | F(x)=x^2+7x-9 | | 3.4=-0.4n | | 36-2(20+12-4*3-2*2)+10=x | | 2=z+20/7 | | 2x-6=-4* | | 6x+21=-9* | | 14x-42=28 | | -25-6m=9m-7 | | U=10×3n | | 2(10-4x=-2(6+2x) | | (6z/4)-14=(8-2z/4) | | 11y-2=5y+28 | | 30-21x=23.91 | | -3q-12=18 | | x^24x-3=0 | | 5g+22=-58 | | 3x+6x-7=37 |