If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-17x+36=0
a = 2; b = -17; c = +36;
Δ = b2-4ac
Δ = -172-4·2·36
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-1}{2*2}=\frac{16}{4} =4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+1}{2*2}=\frac{18}{4} =4+1/2 $
| 5b-2=-7 | | (0.5z+4)/(1.2z+6)=5/3 | | 3y2-14y-5=0 | | 3x2+16x+20=0 | | (2-9x)/(16+5x)=0 | | ((2-9x)/(16+5x))=0 | | 3=y-44/10 | | 1|3(9-2x)=x+1 | | -15+3x=8x | | ((2-9z)/(17-4z))=4/5 | | -16+3x+1=8x | | 12/x-1=2/3 | | 12/c-1=2/3 | | ((4x+1)/3)+((2x-1)/2)-((3x-7)/5)=6 | | -4y-8=-8 | | 8=64/y | | 3z-12=-6 | | ((z+5)/6)-((z-1)/9)=(z+3)/4 | | d/4-8=-2 | | (z+5)/6-(z-1)/9=(z+3)/4 | | 10=x*18 | | 7+30x0.5=18.5 | | 3x=20÷7-x | | s(-3)=14-2(-3) | | 2c^2+2c-1=0 | | 1*5+2/1-2=x | | q(1+1/2)=9 | | 2/6=y/37 | | 2^2x-3.2^x2^-4=0 | | 2^2x-3.2^x-4=0 | | a^2-196a+324=0 | | 0.15x0.15=0.0225 |