If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-14x-13=0
a = 2; b = -14; c = -13;
Δ = b2-4ac
Δ = -142-4·2·(-13)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-10\sqrt{3}}{2*2}=\frac{14-10\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+10\sqrt{3}}{2*2}=\frac{14+10\sqrt{3}}{4} $
| 1/4x+2/3=1/8x5/3 | | q+30=59 | | 4/12b=5 | | 3c=10.26 | | 9v=-189 | | 13x+7=8+27 | | r-2.1=4.7 | | t-2=54 | | 216=6^(2r-11 | | u+6=37 | | m+26=982 | | b+2=24 | | 6x–3x+4–2x=1x+1 | | 5.45x6.9=0 | | c+5=943 | | c+2/6=5/6 | | 595=r-132 | | 2(3.14)(2)=n | | 4/b=24 | | k=44 | | -2n+-6=13 | | 10r =4 | | 8+8y=–10−10y | | v/25=29 | | -4.76–3.2x=1–1.6x | | 4a+4=39-2a | | 7b=945 | | –2v+9=v | | f-15=52 | | p-805=-107 | | –2(d+–2)=6 | | (3x−4)+43=180 |