If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-14x+23=0
a = 2; b = -14; c = +23;
Δ = b2-4ac
Δ = -142-4·2·23
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{3}}{2*2}=\frac{14-2\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{3}}{2*2}=\frac{14+2\sqrt{3}}{4} $
| -10=6(u-3)-4u | | -24=8(x+3)-2x | | 39+8k=7(k-6)-1 | | r/4+9=22 | | 2(2)+4y=50 | | 7x-41=8x+11 | | 5y+15=69y+20=83 | | 4/9=-2v | | 5/6v=-35 | | -4y/5=-28 | | 7(4x+1)-2=47 | | R.1/8r=3 | | 5(6-x0)=12.5 | | r^2=-25 | | 5(6-x0=12.5 | | (x-50)/50=0.145 | | (x-50)/50=0.14 | | 3x+45=105 | | x+26+40=180 | | -2x^2+15x+4=0 | | 0.01x0.01=x | | -c-2+43=50 | | -11*x-7=15 | | 8b+8-4b-3b=-2 | | 10x-20=15x-5 | | x20=6x | | 4^5=32^x | | (4y-9)^2-9=7 | | 1372=16t^2 | | (x+4)*x=28 | | 5=2(y-1) | | (7-2y)/2-2(2-y)/5=1.25 |