If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-12x+1=0
a = 2; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·2·1
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{34}}{2*2}=\frac{12-2\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{34}}{2*2}=\frac{12+2\sqrt{34}}{4} $
| 6x+1=9x-2 | | (X+2)(x-3=176 | | a+3/4-a+2/8=a/2-1 | | 6(x-2)=38 | | 2c-26=8c+2 | | 3x+10+68=180 | | y+136=381 | | 5x-1/7x+5=3x+1/7x+1 | | y+23=34 | | n-42=28 | | 4y-3y=49 | | 3(5x+2)-2(4x-3)=26 | | 9d-12=8d+20 | | 10(c-91)=105 | | 6+3(-2m-6)=m+9 | | 3/2j=6 | | 8x-3/4=5/4 | | 5y+5/2=5/4 | | Y=20+3.5x | | 2x-8(/7)=-6 | | 3y+48=180 | | (17+5p)-(2p+3)=1 | | 110+2x+2=360 | | 1-2x=9-4x | | 10e-140=10 | | -7(2x+5)=28 | | 3z+2(z+8)=11 | | ⅔x-6=12 | | 10x+4/8=8 | | X+62=28-7x | | 6x+8=5x–3 | | 3x+32=87-2× |