If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x+6=0
a = 2; b = -10; c = +6;
Δ = b2-4ac
Δ = -102-4·2·6
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{13}}{2*2}=\frac{10-2\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{13}}{2*2}=\frac{10+2\sqrt{13}}{4} $
| X+1+x2+x+3=132 | | 5(-3x-2)-(x-3)=-4(4+5)+13 | | -3x(2-2)+5(x+3)=0 | | u+1.84=8.16 | | 2x+(10+x)=-4 | | 2x+(-10+x)=-4 | | 3^t=28 | | 2x-(-10+x)=-4 | | 2600(12)=6(2600+x) | | 2x-(10+x)=-4 | | 9q-10=15q+26 | | 20+6y=2y+64 | | 4z-11=53 | | x+80-60=90 | | 12=x(1/3) | | 7b-3b+4=4b+4 | | 1/6w=-22 | | 36/b+8=11 | | y-16÷5=13 | | 5j+3=2j-9 | | 2.4n=-8 | | 57/60=g/80 | | n=105-2n | | 5x-50=250 | | .15y=1000 | | 2/7x=1.2 | | 1/2n=21-2n | | 0=−16x^2+64x+80 | | 3^(x+7)=18x | | c=5/9(77) | | ,-5y=21 | | -x=-17= |